
Bertram Solutions LLC
1525 4th Street

Kirkland, WA 98033
(425) 616-2755

http://www.bertram.solutions
info@bertram.solutions

Kirkland, April 28th, 2022

Hello Travis,

Please find our thoughts and observations regarding the implementation of the ETF-rotatation

strategies.

Thank you,

Best regards.

Felix Bertram

Travis Cook

RIDGELINE ASSET MANAGEMENT

5 Cowboys Way, Suite 300

Frisco, TX 75034

tcook@ridgelineam.com

http://www.bertram.solutions/

Report #08

1

Recap

The strategy now handily outperforms the S&P 500 (in the long term) while at the same time

substantially reducing risk. We notice fast reactions to market sell-offs, including 2018, 2020, and 2022.

Also, we notice that the strategy had positive returns in very year but 2015. With these properties,

periods of relative underperformance, e.g. between 2012 and 2018, are probably tolerable, as the

strategy adds value nonetheless.

Report #08

2

Porting to AmiBroker

Portfolio Backtests
AmiBroker’s portfolio backtester is very simplistic. Our biggest complaint when implementing asset

rotation strategies are:

• The asset’s ranking score is only considered when opening positions, or when falling below a

constant worst-rank-held threshold.

• The backtester does not offer a simple mechanism to rebalance all holdings to their nominal

allocations.

To implement strategies with these features, a custom backtest procedure is required. While it is

possible to implement virtually any strategy using this feature, it remains a kludge. Our main complaints

are:

• The custom backtest procedure makes the strategy code hard to follow. This is because the

custom backtest procedure follows a completely different programming paradigm, and part of

its code directly contradicts the effect of statements in the ‘classic’ part of the code. As an

example, the classic code might initiate a position, which is later filtered or adjusted by the

custom backtest procedure.

• The custom backtest procedure makes the code brittle. This is because it forces duplication of

functionality, e.g., determining an order’s fill price, which may result in inconsistent treatment.

• AmiBroker does not offer a debugger. Given the complexity and error-proneness of the custom

backtest procedure, this results in poorly tested code and potentially subpar code quality.

In our opinion, the custom backtest procedure is an after-thought to an engine that had reached the end

of its lifecycle due to its overly simplistic approach. The features of the AmiBroker platform do not

reflect the complexity and subtleties associated with the custom backtest procedure, and the

requirements serious software development has.

In any case, we managed to get the procedure implemented and are reasonably confident that it works

as intended. Most likely, we should revisit the Bond-Rotation strategy and upgrade it with the same

procedure.

Floating Point Resolution
Porting a strategy to a new platform is never trivial. We can expect a number of little differences

between platforms, and oftentimes these little differences add up in unexpected ways, leading to very

different outcomes. After all, Chaos theory certainly applies to trading systems.

Initially, we ported the algorithm verbatim. However, we quickly noticed significant deviations in

performance. We tracked these issues down to the precision of floating point calculations.

https://en.wikipedia.org/wiki/Chaos_theory

Report #08

3

Report #08

4

The screenshots illustrate what’s happening here. We can see that both platforms show the exact same

data for the high, low, and closing prices of SPY, at least with 8 digits after the decimal point.

However, the calculation of the input variable, the typical price calculated as (H+L+C)/3, shows a loss of

precision. As it seems, AmiBroker only preserves a precision of 4 digits after the decimal point while

TuringTrader’s precision is much higher.

Upon further investigation, we found that AmiBroker is only using single-precision floating point

arithmetic, while TuringTrader is using double-precision. See AmiBroker Knowledge Base » About

floating point arithmetic

What is troubling here is that these errors quickly add up. Single-precision arithmetic has about 7

significant digits. In order to calculate daily returns, we need to subtract quotes from each other. With

SPY trading around 400, this subtraction will remove 3 digits of precision, leaving us with less than 4.

Daily variations are on the order of 1%, requiring 2 digits – which illustrates how inadequate

AmiBroker’s arithmetic is for the problem we are trying to solve.

https://www.amibroker.com/kb/2010/07/20/about-floating-point-arithmetic/
https://www.amibroker.com/kb/2010/07/20/about-floating-point-arithmetic/

Report #08

5

At the core of our algorithm is a newly-designed low-pass filter, which dynamically adjusts its lookback

period to the volatility of the asset. The two tables above compare the results between TuringTrader

and AmiBroker. As it stands, AmiBroker’s filter output deviates from TuringTrader by several percent. As

these deviations are induced by lack of precision, we have to assume that they are random noise – the

very variable we aim to eliminate with our new indicator.

Report #08

6

Universe
The Strategy uses a fairly broad universe of ETFs. During development, we heavily relied on

TuringTrader’s featureset to backfill the quotes for some of these ETFs, most importantly XLC and XLRE.

Because AmiBroker is missing these features, the backtest will miss these choices in early years, and

substitute them with other assets. Consequently, the results of the strategy will always differ between

the platforms.

Re-Optimization
To compensate at least partially for the issues outlined above, we re-optimized the strategy. As a result,

many parameters slightly differ between the platforms. However, it is comforting to see that the newly

optimized parameters are quite close to those used on the TuringTrader platform. Also, the

characteristics of the strategy, most importantly the shape of the equity curve, its drawdowns, and

tracking to benchmark are very similar. We interpret this as evidence that the methodology and the

parameter set are sufficiently stable.

Report #08

7

Results

Statistics

Report #08

8

Equity Curve

Drawdown

Report #08

9

Rolling Returns

Tracking to Benchmark

Report #08

10

Profit & Loss

With these results, we summarize the strategy as follows:

• In typical years, returns are slightly lower than the S&P 500, but outperforms a 60/40

• In prolonged recessions, the strategy wins over the S&P 500

• Drawdowns are significantly lower than the S&P 500

• The strategy performs well in fast-moving markets

• The strategy performs well in environments of rising yields

With these characteristics, the strategy might not meet the requirements of aggressive investors, but is

certainly a good fit for a balanced investment approach.

Some of the ETFs used in the universe are trading in relatively small volumes. In our opinion, trading

volume of ETFs has much less significance than the trading volume of stocks. This difference stems from

the continuous creation and redemption of ETF shares through the authorized participants. Because

shares are created in creation units of typically 50k shares, we assume that the participants have enough

shares in their inventory to satisfy orders, even if these exceed the daily traded volume.

Report #08

11

Installation
To install the strategy, perform the following steps:

Create Watchlist
The strategy works on a pre-defined universe. The strategy code makes no explicit assumptions about

this universe. Therefore, additions, removals or substitutions of assets can easily be made and do not

require any code changes.

Right-click under Watch Lists and select New watchlist.

When prompted for the name of the new watch list enter BeSol-ETF-Rotation.

Report #08

12

Find your newly created watchlist, right click and select Import.

When prompted to select the watch list, you should find BeSol-ETF-Rotation pre-selected. Click OK to

confirm.

Report #08

13

Navigate to the file BeSol-ETF-Rotation.tls which we provided and click Open.

You should see the watchlist populated with the following symbols:

• Sectors: XLB, XLC, XLE, XLF, XLI, XLK, XLP, XLRE, XLU, XLV, XLY

• Factors: SPY, SPYG, SPYV, MDY, MDYG, MDYV, SLY, SLYG, SLYV

• Fixed Income: HYG, LQD, TLT, TLH, IEF, IEI, SHY, BIL

• Commodities: DBC, GLD, SLV

Report #08

14

Import the strategy

Open the File menu and click Open.

Report #08

15

Select the file BeSol-ETF-Rotation.apx.

Confirm that the strategy is applied to a Filter, that the backtest range is From-To dates, and that the

dates are set up as desired.

Report #08

16

Confirm that the BeSol-ETF-Rotation watchlist is selected in the Filter settings.

Report #08

17

Confirm the Backtester settings. Unlike our bond rotation, this strategy reads almost all of its

parameters from the Backtester settings dialog. It is therefore crucial that these settings are correct.

Report #08

18

You should now be able to run the strategy and see the same results we saw with our development

environment.

